Controls on the movement and composition of firn air at the West Antarctic Ice Sheet Divide
نویسندگان
چکیده
We sampled interstitial air from the perennial snowpack (firn) at a site near the West Antarctic Ice Sheet Divide (WAIS-D) and analyzed the air samples for a wide variety of gas species and their isotopes. We find limited convective influence (1.4–5.2 m, depending on detection method) in the shallow firn, gravitational enrichment of heavy species throughout the diffusive column in general agreement with theoretical expectations, a ∼ 10 m thick lock-in zone beginning at ∼ 67 m, and a total firn thickness consistent with predictions of Kaspers et al. (2004). Our modeling work shows that the air has an age spread (spectral width) of 4.8 yr for CO2 at the firn-ice transition. We also find that advection of firn air due to the 22 cm yr−1 ice-equivalent accumulation rate has a minor impact on firn air composition, causing changes that are comparable to other modeling uncertainties and intrinsic sample variability. Furthermore, estimates of 1age (the gas age/ice age difference) at WAIS-D appear to be largely unaffected by bubble closure above the lock-in zone. Within the lock-in zone, small gas species and their isotopes show evidence of size-dependent fractionation due to permeation through the ice lattice with a size threshold of 0.36 nm, as at other sites. We also see an unequivocal and unprecedented signal of oxygen isotope fractionation within the lock-in zone, which we interpret as the mass-dependent expression of a size-dependent fractionation process. Correspondence to: M. O. Battle ([email protected])
منابع مشابه
Determination of accumulation rates from a shallow firn core of the West Antarctic Ice Sheet
In recent decades the West Antarctic Ice Sheet has experienced warming and glacial retreat. Despite receiving growing attention, knowledge of glacial dynamics in this region remains limited. Snow accumulation data is sparse and fails to capture true spatial variability. A shallow firn core, drilled at the triple ice divide between Pine Island Glacier, Institute Ice Stream, and Rutford Ice Strea...
متن کاملSpatial Patterns in Mass Balance of the Siple Coast and Amundsen Sea Sectors, West Antarctica
Local rates of change in ice-sheet thickness were calculated at 15 sites in West Antarctica using the submergence velocity technique. This method entails a comparison of the vertical velocity of the ice sheet, measured using repeat global positioning system surveys of markers, and local long-term rates of snow accumulation obtained using firn-core stratigraphy. Any significant difference betwee...
متن کاملPost-coring entrapment of modern air in some shallow ice cores collected near the firn-ice transition: evidence from CFC-12 measurements in Antarctic firn air and ice cores
In this study, we report measurements of CFC12 (CCl2F2) in firn air and in air extracted from shallow ice cores from three Antarctic sites. The firn air data are consistent with the known atmospheric history of CFC-12. In contrast, some of the ice core samples collected near the firn-ice transition exhibit anomalously high CFC-12 levels. Together, the ice core and firn air data provide evidence...
متن کاملClimate sensitivity of the century-scale hydrogen peroxide (H2O2) record preserved in 23 ice cores from West Antarctica
[1] We report new century-scale ice core records of hydrogen peroxide (H2O2), a major atmospheric oxidant, from 23 locations across the West Antarctic Ice Sheet (WAIS) and use the spatial variability of (multi-) annual mean H2O2 concentrations in snow and firn to investigate the sensitivity of ice core H2O2 preservation to mean annual temperature and accumulation rate. In agreement with the ice...
متن کاملLittle Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide
[1] The largest climate anomaly of the last 1000 years in the Northern Hemisphere was the Little Ice Age (LIA) from 1400–1850 C.E., but little is known about the signature of this event in the Southern Hemisphere, especially in Antarctica. We present temperature data from a 300 m borehole at the West Antarctic Ice Sheet (WAIS) Divide. Results show that WAIS Divide was colder than the last 1000-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011